The Dimension Vectors of Indecomposable Modules of Cluster-tilted Algebras and the Fomin-Zelevinsky Denominators Conjecture  被引量:3

The Dimension Vectors of Indecomposable Modules of Cluster-tilted Algebras and the Fomin-Zelevinsky Denominators Conjecture

在线阅读下载全文

作  者:Shengfei GENG Liangang PENG 

机构地区:[1]Department of Mathematics,Sichuan University

出  处:《Acta Mathematica Sinica,English Series》2012年第3期581-586,共6页数学学报(英文版)

基  金:Supported partially by the National 973 Programs (Grant No. 2006CB805905)

摘  要:The main result of this paper is that any two non-isomorphic indecomposable modules of a cluster-tilted algebra of finite representation type have different dimension vectors. As an application to cluster algebras of Types A, D, E, we give a proof of the Fomin Zelevinsky denominators conjecture for cluster variables, namely, different cluster variables have different denominators with respect to any given cluster.The main result of this paper is that any two non-isomorphic indecomposable modules of a cluster-tilted algebra of finite representation type have different dimension vectors. As an application to cluster algebras of Types A, D, E, we give a proof of the Fomin Zelevinsky denominators conjecture for cluster variables, namely, different cluster variables have different denominators with respect to any given cluster.

关 键 词:Dimension vector cluster tilting object cluster-tilted algebra denominator 

分 类 号:O152.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象