MAPS PRESERVING STRONG SKEW LIE PRODUCT ON FACTOR VON NEUMANN ALGEBRAS  被引量:7

MAPS PRESERVING STRONG SKEW LIE PRODUCT ON FACTOR VON NEUMANN ALGEBRAS

在线阅读下载全文

作  者:崔建莲 Choonkil Park 

机构地区:[1]Department of Mathematical Sciences,Tsinghua University [2]Department of Mathematics,Hanyang University,Seoul 133-791,Republic of Korea

出  处:《Acta Mathematica Scientia》2012年第2期531-538,共8页数学物理学报(B辑英文版)

基  金:supported by National Natural Science Foundation of China(10871111);the Specialized Research Fund for Doctoral Program of Higher Education(200800030059)(to Cui);Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology(NRF-2009-0070788)(to Park)

摘  要:Let A be a factor von Neumann algebra and Ф be a nonlinear surjective map from A onto itself. We prove that, if Ф satisfies that Ф(A)Ф(B) - Ф(B)Ф(A)* -- AB - BA* for all A, B ∈ A, then there exist a linear bijective map ψA →A satisfying ψ(A)ψ(B) - ψ(B)ψ(A)* = AB - BA* for A, B ∈ A and a real functional h on A with h(0) -= 0 such that Ф(A) = ψ(A) + h(A)I for every A ∈ A. In particular, if .4 is a type I factor, then, Ф(A) = cA + h(A)I for every A ∈ .4, where c = ±1.Let A be a factor von Neumann algebra and Ф be a nonlinear surjective map from A onto itself. We prove that, if Ф satisfies that Ф(A)Ф(B) - Ф(B)Ф(A)* -- AB - BA* for all A, B ∈ A, then there exist a linear bijective map ψA →A satisfying ψ(A)ψ(B) - ψ(B)ψ(A)* = AB - BA* for A, B ∈ A and a real functional h on A with h(0) -= 0 such that Ф(A) = ψ(A) + h(A)I for every A ∈ A. In particular, if .4 is a type I factor, then, Ф(A) = cA + h(A)I for every A ∈ .4, where c = ±1.

关 键 词:Skew Lie product factor yon Neumann algebras preserver problems 

分 类 号:O153[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象