检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽大学电子信息工程学院,安徽合肥230039
出 处:《安徽大学学报(自然科学版)》2012年第2期55-59,共5页Journal of Anhui University(Natural Science Edition)
基 金:国家自然科学基金资助项目(60771034)
摘 要:应用基于RWG基函数的矩量法(MOM)求解电场积分方程(EFIE)会出现低频失效问题.提出一种基于三角元与RWG基函数关系的连接矩阵,利用该矩阵建立了电荷与电流之间的关系方程,通过该方程将传统的EFIE方法改进为增广矩量方程(A-EFIE)方法.该方法中矢量位与标量位被分离为单独的矩阵元素,避免了低频时传统EFIE中矢量位与标量位的不平衡.应用该文方法分别计算不同低频下理想导体球的双站雷达散射截面(RCS),结果与解析解吻合良好,表明该文方法可以有效地解决传统EFIE的低频失效问题.The electric field integral equation (EFIE) solved by the method of moments (MOM) using the Rao-Wihon-Glisson (RWG) basis functions suffers from the problem of low-frequency breakdown. In this paper, a kind of connection matrix based on the relationship between triangle meshes and RWG basis functions was presented to build an augmented electric field integral equation (A-EFIE) to modify the tradition EFIE through the equation of current continuity. In order to avoid the imbalance between the vector potential and the scalar potential in the EFIE, the potentials were separated to be individual matrix elements in the A-EFIE. This method was employed to calculate the bistatic radar cross section (RCS) of perfectly conducting sphere in different low-frequencies, and the results obtained agree with analytical solution. It was shown that the presented method could solve the problem of low-frequency breakdown in EFIE effectively.
分 类 号:TN011[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157