ANN及FFT技术用于电力系统预想事故分析  被引量:2

APPLICATION OF ANN AND FFT TECHNIQUES TO CONTINGENCY ANALYSIS

在线阅读下载全文

作  者:崔岚[1] 栾兆文[1] 

机构地区:[1]山东工业大学电力系,济南250014

出  处:《电力系统及其自动化学报》2000年第1期28-31,共4页Proceedings of the CSU-EPSA

摘  要:本文开发了一种基于人工神经元网络 (ANN)和快速付里叶变换 (FFT)技术进行预想事故快速筛选的方法。利用快速解耦潮流计算的迭代一次法 (1 P-1 Q)分别构造了反映预想事故严重程度的有功性能指标 PIp和无功性能指标 PIv,同时还构造了一个多层感知型神经元网络并用BP算法加以训练。神经元网络的输入经过快速付氏变换可以大大提高网络的训练速度。算例表明 ,本算法具有较高的性能指标计算精度 ,且性能指标的构造避免了遮蔽现象的发生 ,同时 ANN的特点也使得预想事故的筛选速度大为提高。A new approach based on artificial neural network (ANN) combined with fast Fourier transform (FFT) techniques is developed for single-line contingency screening in steady-state security analysis. The results obtained from 1P-1Q iteration of the fast decoupled load flow calculation are adopted to construct two kinds of performance indices PIp (active performance index) and PIv (reactive performance index) which reflect the severe degrees of certain contingencies. A multi-layered ANN is trained to calculate the performance indices using error back propagation algorithm. FFT for inputs of the ANN is used to improve and speed up the training procedure. The effectiveness of the proposed method is demonstrated by contingency screening on IEEE test systems.The calculating accuracy,high capturing rate and analysis speed for contingency screening are obtained using the proposed method.

关 键 词:ANN FFT 电力系统 预想事故分析 

分 类 号:TM711[电气工程—电力系统及自动化] TM732

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象