检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国人民解放军装甲兵学院,安徽蚌埠233050
出 处:《信息网络安全》2012年第3期74-77,共4页Netinfo Security
摘 要:图像聚类是图像信息检索鉴别的关键技术,在图像信息系统中,图像的检索效率是至关重要的,在基于内容的图像鉴别中,如果能利用低级别的可视特征进行高效图像聚类,将大大提高图像信息的检索鉴别精度。文章分别利用色矩与BTC算法(分块截短编码)来提取图像的特征并进行图像特征K均值聚类,从而验证两种图像信息鉴别方法的效率,实验结果表明,分块截短编码(BTC)算法可以实现较高效率的图像鉴别。Image clustering is the key technology for identification and searching of image information. The retrieval efficiency of image is critically important in pictorial information system. If we use low-level visual features for efficient image clustering in the content-based image identification, we will greatly improve the accuracy of image retrieval and identification. The Color Moment method and the Block Truncation Coding (BTC) method are used to extract color features respectively for clustering features using K-Means. The efficiencies of these two methods for the identification of image information are validated by experiment. The experimental result shows that the BTC (Block Truncated Coding) method to extract the image features for image clustering in order to identify image with higher efficiency.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3