(Gd_2O_3)_x(ZrO_2)_(1-x)(x=0.05-0.15)电解质材料的电导及其分子动力学模拟  

Conductivity and Molecular Dynamics Simulations of (Gd_2O_3)_x(ZrO_2)_(1-x)(x=0.05-0.15) Electrolytes

在线阅读下载全文

作  者:谢笑虎[1,2] 孙加林[1] 宋文[1] 

机构地区:[1]北京科技大学无机非金属系,北京100083 [2]中国钢研科技集团有限公司特种陶瓷与耐火材料北京市重点实验室,北京100081

出  处:《哈尔滨理工大学学报》2012年第1期6-10,共5页Journal of Harbin University of Science and Technology

基  金:国家"863计划"(2009AA032503)

摘  要:为了探讨作为固体氧化物燃料电池电解质材料的可行性,采用交流阻抗谱研究了(Gd2O3)x(ZrO2)1-x(x=0.05-0.15)固体电解质材料的晶粒电导率,并通过分子动力学方法模拟了Gd2O3掺杂ZrO2固体电解质材料的动力学行为,计算并分析了温度和Gd2O3掺杂量对体系离子传导性能的影响.实验和模拟结果均表明,升高温度能明显增强离子电导性能.当Gd2O3掺杂量为8 mol%时,材料的电导性能取得最优值.In an attempt to be developed as a electrolyte material for solid oxide fuel cells, AC impedance spectroscopy was employed to study the bulk conductivity of (Gd2O3)x(ZrO2)1-x(X=0.05-0.15)electrolytes. The ionic dynamic behaviors of Gd2O3 doped ZrO2 solid electrolytes were also investigated by molecular dynamics simulation. The effect of temperature and Gd2O3 dopant content on the conductivity of materials were simulated and calculated. The results from both experiments and simulations showed that the ionic conductivity was enhanced by ramping temperature, while 8 mol% of Gd2O3 doping concentration tends to have the optimal ionic conductivity.

关 键 词:离子传导性 分子动力学 掺杂 空位簇 交流阻抗谱 

分 类 号:TM911.3[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象