检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116
出 处:《电子学报》2012年第2期371-375,共5页Acta Electronica Sinica
基 金:国家自然科学基金(No.50674086);国家博士后科学基金(No.20070421041)
摘 要:可能性模糊聚类算法解决了噪音敏感和一致性聚类问题,但算法假定每个待分析样本对聚类的贡献相同,导致离群点或噪声点对算法的干扰较强,算法迭代次数过大.为此,提出一种基于样本加权的可能性模糊聚类算法,新算法具有更快的收敛速度,对标准数据集和人工数据集加噪后的测试结果表明,该算法具有更强的鲁棒性,在有效降低时间复杂度的同时能够取得较好的聚类准确率.The possibilistic fuzzy clustering algorithm overcomes the problem of sensitivity to noises and coincident clusters, but it assumes the contribution of each sample is equal, which leads to strong impact from outliers or noises and too many iterations. For this reason,this paper proposes a novel faster possibilistic fuzzy clustering algorithm based on the sample-weighted idea. The re- sults of the experiments on standard data sets and synthetic data sets show that the sample-weighted algorithm is more robust against noises and outliers and reduces the time complexity effectively, and can obtain good clustering accuracy at the same time.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.20.207