检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邬月春[1]
机构地区:[1]兰州交通大学自动化与电气工程学院,甘肃兰州730070
出 处:《兰州交通大学学报》2012年第1期114-117,共4页Journal of Lanzhou Jiaotong University
基 金:国家自然科学基金(10972095);甘肃省自然科学基金(1112RJZA051)
摘 要:物流配送路径优化问题是一类实用价值很高的NP组合问题,针对传统启发式优化算法搜索速度慢、易陷入局部最优解的缺点,本文提出了一种自适应变异粒子群算法,该算法在迭代过程中加入了变异操作,根据群体适应度方差调整变异概率的大小,并通过调整惯性权重因子来增强算法跳出局部最优的能力.本文将自适应变异粒子群算法应用于物流配送路径问题优化,建立数学模型,介绍该算法的详细实现过程.将该算法通过和遗传算法、混合蚁群算法和标准粒子群算法进行比较,证明了其搜索速度和寻优能力的优越性.The logistics distribution route problem is a kind of NP combination problem which possesses important practical value.In order to overcome the problems such as long computing time and easy to fall into local best for traditional heuristic optimization algorithm,an Adaptive Mutation Particle Swarm Optimization(AMPSO) is proposed.The algorithm adds mutation operation in iteration process and adjusts the inertia weighting factor to enhance its ability to break away from local optimum,and the mutation probability is adjusted by variance of the population's fitness.In this paper,the algorithm of AMPSO is investigated to solve the logistics distribution route problem,and the mathematic mode is established and the solution algorithm is developed.The simulation results of example indicate that AMPSO has more search speed and stronger optimization ability than that of genetic algorithm(GA),hybrid ant colony algorithm and the PSO algorithm.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.154.2