选择性聚类融合研究进展  被引量:3

Study on clustering ensemble selection

在线阅读下载全文

作  者:刘丽敏[1] 樊晓平[1] 廖志芳[2] 

机构地区:[1]中南大学信息科学与工程学院,长沙410075 [2]中南大学软件学院,长沙410075

出  处:《计算机工程与应用》2012年第10期1-5,15,共6页Computer Engineering and Applications

基  金:国家自然科学基金(No.60774023);湖南省自然科学基金(No.06JJ50143)

摘  要:传统的聚类融合方法通常是将所有产生的聚类成员融合以获得最终的聚类结果。在监督学习中,选择分类融合方法会获得更好的结果,从选择分类融合中得到启示,在聚类融合中应用这种方法被定义为选择性聚类融合。对选择性聚类融合关键技术进行了综述,讨论了未来的研究方向。Traditional clustering ensemble combines all of the available clustering partitions to get the final cluster-ing result. But in supervised classification area, it has been known that selective classifier ensembles can always achieve better solutions. Following the selective classifier ensembles, the question of clustering ensemble is defined as clustering ensemble selection. The paper introduces the concept of clustering ensemble selection, gives the survey of clustering ensemble selection algorithms and discusses the future directions of clustering ensemble selection.

关 键 词:聚类融合 选择性聚类融合 选择策略 融合函数 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象