检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学计算机科学与技术学院,徐州221116
出 处:《计算机科学》2012年第4期139-141,153,共4页Computer Science
基 金:国家自然科学基金(60970032);江苏省自然科学基金(BK2008124);江苏省"青蓝工程";江苏省研究生培养创新工程项目(CX10B_157Z)资助
摘 要:针对目前复杂系统多路径覆盖测试用例生成方法较少的问题,提出一种新的基于复杂系统的多路径覆盖测试用例生成方法。首先改进遗传算法,在种群进化中对父代选择、个体进化的学习能力和种群的自适应更新方法进行改进,以有效避免算法收敛过慢或者"早熟"现象。然后根据多路径覆盖测试的特点与要求,设计基于路径匹配的适应度函数,使得运行一次算法便可生成覆盖多条目标路径的多个测试用例。最后将该方法用于几个基准程序。实验结果表明,与已有方法比较,此方法的测试用例生成效率显著提高。In the light of the lack of effective methods to generating test case for multiple paths coverage based on complex system,we proposed a novel evolutionary generation approach of test case for multiple paths coverage.First,generic algorithm was improved:the ability of parent evolutionary selection,individual evolution and adaptive update method of populations were improved in the evolution of population,which cound solve the algorithm for early slow convergence or premature effectively.And then,according to the features and requirements of multiple paths coverage,fitness function based on path-match was designed so that in one run,it was able to generate multiple test data to cover multiple target paths.Finally,the proposed approach was applied into several benchmark programs.The experimental results show that the proposed approach can improve the efficiency of test data generation effectively.
关 键 词:复杂系统 多路径覆盖 测试用例生成 遗传算法 适应度函数
分 类 号:TP311.56[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249