一种基于PCA和ANN的土壤水力性质估计方法  被引量:12

A method based on principal component analysis and artificial neural network for estimating soil hydraulic properties

在线阅读下载全文

作  者:廖凯华[1] 徐绍辉[2] 吴吉春[1] 施小清[1] 

机构地区:[1]南京大学水科学系,江苏南京210093 [2]青岛大学环境科学系,山东青岛266071

出  处:《水利学报》2012年第3期333-338,共6页Journal of Hydraulic Engineering

基  金:国家自然科学基金(40771095;40725010;41030746);青岛市水利科技项目(2006-003)

摘  要:本文根据土壤基本性质,利用主成分分析和人工神经网络相结合的方法(PANN)构建了预测田间持水量和凋萎系数的土壤转换函数,并将其结果与传统的神经网络模型(ANN)进行了比较。结果表明,由于PANN消除了神经网络输入层参数的相关性,降低了网络拓扑的复杂度,从而具有更好的预测能力。Prediction of the field capacity and the permanent wilting point is of importance due to actual needs of hydrological model for solving large scale soil moisture problems.The aim of this study is to develop pedotransfer functions for predicting field capacity and permanent wilting point through a new methodology based on artificial neural network using principal components as inputs.The developed model is compared with artificial neural network based on the original data.The result shows that the proposed method has a better predictive ability because it eliminates the correlation of parameters in the input layer of the neural network and reduces the complexity of the network topology.

关 键 词:田间持水量 凋萎系数 土壤转换函数 主成分 人工神经网络 

分 类 号:S152.7[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象