检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖凯华[1] 徐绍辉[2] 吴吉春[1] 施小清[1]
机构地区:[1]南京大学水科学系,江苏南京210093 [2]青岛大学环境科学系,山东青岛266071
出 处:《水利学报》2012年第3期333-338,共6页Journal of Hydraulic Engineering
基 金:国家自然科学基金(40771095;40725010;41030746);青岛市水利科技项目(2006-003)
摘 要:本文根据土壤基本性质,利用主成分分析和人工神经网络相结合的方法(PANN)构建了预测田间持水量和凋萎系数的土壤转换函数,并将其结果与传统的神经网络模型(ANN)进行了比较。结果表明,由于PANN消除了神经网络输入层参数的相关性,降低了网络拓扑的复杂度,从而具有更好的预测能力。Prediction of the field capacity and the permanent wilting point is of importance due to actual needs of hydrological model for solving large scale soil moisture problems.The aim of this study is to develop pedotransfer functions for predicting field capacity and permanent wilting point through a new methodology based on artificial neural network using principal components as inputs.The developed model is compared with artificial neural network based on the original data.The result shows that the proposed method has a better predictive ability because it eliminates the correlation of parameters in the input layer of the neural network and reduces the complexity of the network topology.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7