检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:A. HAFIZI A. AHMADPOUP M. M. HERAVI F. F. BAMOHARRAM M. KHOSROSHAHI
机构地区:[1]Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran [2]Department of Chemistry, School of Sciences, Alzahra University, Tehran 1993893973, Iran [3]Department of Chemistry, Mashhad Branch-Islamic Azad University, Mashhad 9187147574, Iran
出 处:《催化学报》2012年第3期494-501,共8页
基 金:supported by the office of vice chancellor of research of Sharif University of Technology
摘 要:The response surface method (RSM) was applied to study the liquid phase alkylation of benzene with 1-decene catalyzed by means of silica supported Preyssler heteropoly acid. A three step experimental design was developed based on the central composite design (CCD). Catalyst loading, catalyst mass percent, and benzene to 1-decene molar ratio were used to optimize 1-decene conversion and linear alkylbenzene (LAB) yield. The results indicated that the quadratic model was significant for these two responses. The experimental results revealed that all variables had positive effect on 1-decene conversion. While increasing the catalyst loading tends to decrease LAB yield. Benzene to 1-decene molar ratio was found to be the most important factor that influenced LAB yield with a positive effect. Design expert software suggested several optimized solutions, among them the best choice was to use 31% catalyst loading, benzene to 1-decene molar ratio of 13, and catalyst percent of 3.6 wt% for obtaining 100% conversion and 88% LAB production yield.The response surface method (RSM) was applied to study the liquid phase alkylation of benzene with 1-decene catalyzed by means of silica supported Preyssler heteropoly acid. A three step experimental design was developed based on the central composite design (CCD). Catalyst loading, catalyst mass percent, and benzene to 1-decene molar ratio were used to optimize 1-decene conversion and linear alkylbenzene (LAB) yield. The results indicated that the quadratic model was significant for these two responses. The experimental results revealed that all variables had positive effect on 1-decene conversion. While increasing the catalyst loading tends to decrease LAB yield. Benzene to 1-decene molar ratio was found to be the most important factor that influenced LAB yield with a positive effect. Design expert software suggested several optimized solutions, among them the best choice was to use 31% catalyst loading, benzene to 1-decene molar ratio of 13, and catalyst percent of 3.6 wt% for obtaining 100% conversion and 88% LAB production yield.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198