Process data compression based on recursive identification of nonuniformly sampled systems  

Process data compression based on recursive identification of nonuniformly sampled systems

在线阅读下载全文

作  者:Boyi NI, Deyun XIAO Department of Automation, Tsinghua University, Beijing 100084, China 

出  处:《控制理论与应用(英文版)》2012年第2期166-175,共10页

摘  要:A recursive identification method is proposed to obtain continuous-time state-space models in systems with nonuniformly sampled (NUS) data. Due to the nonuniform sampling feature, the time interval from one recursion step to the next varies and the parameter is always updated partially at each step. Furthermore, this identification method is applied to form a combined data compression method in NUS processes. The data to be compressed are first classified with respect to a series of potentially existing (possibly time-varying) models, and then modeled by the NUS identification method. The model parameters are stored instead of the identification output data, which makes the first compression. Subsequently, as the second step, the conventional swinging door trending method is carried out on the data from the first step. Numeric results from simulation as well as practical data are given, showing the effectiveness of the proposed identification method and fold increase of compression ratio achieved by the combined data compression method.A recursive identification method is proposed to obtain continuous-time state-space models in systems with nonuniformly sampled (NUS) data. Due to the nonuniform sampling feature, the time interval from one recursion step to the next varies and the parameter is always updated partially at each step. Furthermore, this identification method is applied to form a combined data compression method in NUS processes. The data to be compressed are first classified with respect to a series of potentially existing (possibly time-varying) models, and then modeled by the NUS identification method. The model parameters are stored instead of the identification output data, which makes the first compression. Subsequently, as the second step, the conventional swinging door trending method is carried out on the data from the first step. Numeric results from simulation as well as practical data are given, showing the effectiveness of the proposed identification method and fold increase of compression ratio achieved by the combined data compression method.

关 键 词:Nonuniformly sampled system Recursive identification Data compression Swinging door trending 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象