检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中北大学学报(自然科学版)》2012年第1期14-17,共4页Journal of North University of China(Natural Science Edition)
基 金:山西省自然科学基金资助项目(2011011002-4)
摘 要:利用变分方法与临界点理论,特别是临界群与Morse理论,结合矩阵理论与空间维数,同时考虑正、负能量泛函的临界点,研究了一维非线性离散椭圆共振问题解的多重性.在一定的假设条件下,得到了此类问题至少存在两个非零解的两类新的充分条件,并给出了具体应用的实例.结果表明:在相同的假设条件下,一维共振问题比多维共振问题得到的解更多.By using the variational method and critical point theory,especially critical group and Morse theory,combined with the matrix theory and space dimension,taking into account the critical points of both positive and negative energy functional,the multiplicity of solutions of 1-dimensional nonlinear discrete elliptic resonant problem was investigated.Under some assumptions,two kinds of new sufficient conditions were obtained under which there exist at least two nonzero solutions.An example was given to verify the obtained results.The results showed that,under the same assumptions,the number of known solutions of 1-dimensional resonant problem is more than that of multidimensional resonant problem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.115.102