检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]解放军91388部队
出 处:《探测与控制学报》2012年第1期50-54,共5页Journal of Detection & Control
摘 要:分析了奎因(Quinn)算法的性能,针对Quinn算法在信号频率接近离散傅里叶变换(DFT)量化频率时估计误差较大的问题,提出了一种改进的算法。改进算法在Quinn算法基础上通过对信号进行频移以使信号频率位于DFT量化频率中心区域,然后再用Quinn算法估计频率。仿真结果表明:改进算法估计性能不随被估计信号的频率分布而产生波动,在整个频段内估计均方根误差接近克拉美-罗限,而且具有较低信噪比门限,整体性能优于Quinn算法。在信噪比为6dB时,改进算法估计性能优于基于FFT滑动平均极大似然法。Quinn algorithm has a disadvantage of the large variance of frequency estimation when the signal frequency is closed to the DFT(Discrete Fourier Transform) discrete frequency.Aimed at the problems of Quinn algorithm,an improved frequency estimation algorithm was presented by moving the signal frequency to the midpoint of two neighboring DFT discrete frequencies.The computer simulation showed that the performance of the improved algorithm did not fluctuate with the distribution of signal frequency,the RMSE(Root Mean Square Error) approached to CRLB(Cramer-Rao Lower Bound) throughout whole frequency range.the improved algorithm also had a low SNR(Signal Noise Ratio) threshold.The performance of the improved algorithm was better than Quinn algorithm.Compared with FFT-based moving average maximum likelihood(MAML)single-tone frequency estimation,the performance of the improved algorithm was better than MAML when SNR was 6 dB.
关 键 词:频率估计 Quinn算法 离散傅里叶变换 克拉美-罗限
分 类 号:TN911.6[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7