基于光流场核密度估计的动态目标分割  被引量:2

Detection of moving objects based on optical flow kernel density estimation

在线阅读下载全文

作  者:王洋[1] 李征[1] 孙嘉[1] 

机构地区:[1]四川大学计算机学院,成都610064

出  处:《四川大学学报(自然科学版)》2012年第2期309-314,共6页Journal of Sichuan University(Natural Science Edition)

基  金:四川省科技厅应用基础研究基金(2006J13-092)

摘  要:在经典的核心密度估计模型中,基于像素亮度的估计能够将同一目标更好地连通显示,具有集中的像素分布规律.利用这一规律,可将经典核密度模型的计算维度扩展到二维,用其分割像素对应的光流场,并称该方法为基于光流场核密度估计的动态目标分割模型.实验证明,该方法能够从运动背景中很好地检测出较完整的运动目标.In classical kernel density estimation, for the estimation is based on pixels' brightness it can offer the target a better connectivity and the inherent concentrated pixel distribution. To make use of the advantages, the calculation of dimensions can be expanded to be enabled to segment the optical flow relative to a pixel, and the method can be named as Detection of Moving Object Based on Optical Flow Ker nel Density Estimation. Experiments show that the method can extract more complete moving objects from a moving background.

关 键 词:光流场 核密度估计 运动背景 动态目标分割 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象