An L^0(F,R)-valued Function's Intermediate Value Theorem and Its Applications to Random Uniform Convexity  被引量:2

An L^0(F,R)-valued Function’s Intermediate Value Theorem and Its Applications to Random Uniform Convexity

在线阅读下载全文

作  者:Tie Xin GUO Xiao Lin ZENG 

机构地区:[1]LMIB and School of Mathematics and Systems Science,Beihang University [2]College of Mathematics and Statistics,Chongqing Technology and Business University

出  处:《Acta Mathematica Sinica,English Series》2012年第5期909-924,共16页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China (Grant No. 10871016)

摘  要:Let (Ω, F, P) be a probability space and L0(F,R) the algebra of equivalence classes of real- valued random variables on (Ω, F, P). When L0(F,R) is endowed with the topology of convergence in probability, we prove an intermediate value theorem for a continuous local function from L0(F, R) to L0(F,R). As applications of this theorem, we first give several useful expressions for modulus of random convexity, then we prove that a complete random normed module (S, ||·||) is random uniformly convex iff LP(S) is uniformly convex for each fixed positive number p such that 1 〈 p 〈 +∞.Let (Ω, F, P) be a probability space and L0(F,R) the algebra of equivalence classes of real- valued random variables on (Ω, F, P). When L0(F,R) is endowed with the topology of convergence in probability, we prove an intermediate value theorem for a continuous local function from L0(F, R) to L0(F,R). As applications of this theorem, we first give several useful expressions for modulus of random convexity, then we prove that a complete random normed module (S, ||·||) is random uniformly convex iff LP(S) is uniformly convex for each fixed positive number p such that 1 〈 p 〈 +∞.

关 键 词:L0(F R)-valued function intermediate value theorem random normed module random uniform convexity modulus of random convexity 

分 类 号:O153[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象