检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:章少辉[1,2] 许迪[1,2] 李益农[1,2] 白美健[1,2]
机构地区:[1]中国水利水电科学研究院水利研究所,北京100048 [2]国家节水灌溉北京工程技术研究中心,北京100048
出 处:《排灌机械工程学报》2012年第2期231-236,共6页Journal of Drainage and Irrigation Machinery Engineering
基 金:国家863计划项目(2011AA100505);“十二五”国家科技支撑计划项目(2011BAD25B04)
摘 要:基于撒施施肥方式下畦灌试验数据,从传统平均相对误差和马尔科夫随机过程两个角度,对二维撒施畦灌地表水流溶质运移模型进行了验证.基于传统平均相对误差的结果表明,模型模拟的水流推进与消退的平均相对误差分别为4.98%和9.37%,水量平衡误差为0.28%,模拟各测点的溶质质量浓度变化过程平均相对误差为8.64%~14.22%,溶质平衡误差0.58%,构建的模型不仅具有较好的模拟二维撒施畦灌地表水流运动和溶质质量浓度变化过程的能力,还具备较佳的水量与溶质质量守恒性.基于马尔科夫随机过程的计算结果表明,地形项的随机性对模拟效果的影响为88.68%~96.21%,而畦面土壤物理属性等模型未能考虑因素的随机性对各测点溶质质量浓度变化的影响为3.79%~11.32%,因此仅考虑畦面微地形分布随机性的模型,具备优良的二维撒施畦灌地表水流和溶质运移过程的模拟性能.构建的模型为评价撒施施肥方式下的畦灌施肥系统性能,提供了合理完备的实用性数值模拟工具.The two-dimensional surface water flow and solute transport model of border irrigation with broadcasted fertilizer was validated by using the experimental data according to the views of the tradi- tional average relative error and the Markov stochastic process. From the view of the conventional average relative error, the average errors in water advance and recession phases are 4.98% and 9.37% , and the water balance error is 0.28% , the average errors in solute concentration at every observed point are 8.64% - 14.22% , and the solute balance error is 0.58%. Thus the proposed model can successfully simulate the water and solute transport processes in border irrigation with broadcasted fer- tilizer. From the view of Markov stochastic process, the micro-topography stochastic effect on the simu- lated results is 88.68% -96.21% , and the soil surface stochastic effect which isn't involved in the model is 3.97% -11.32%, so that even the model just includes the micro-topography randomness, it has a good simulation performance. Consequently the proposed model provides a practical and perfect numerical tool for evaluating the performance of border irrigation with broadcasted fertilizer.
关 键 词:畦灌试验 撒施 溶质质量浓度 平均相对误差 马尔科夫随机过程
分 类 号:S275.3[农业科学—农业水土工程] O351.2[农业科学—农业工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33