基于层次聚类法的Entropy-KNN算法  被引量:2

Entropy-KNN Algorithm Based on Hierarchical Clustering

在线阅读下载全文

作  者:童先群[1] 周忠眉[1] 

机构地区:[1]漳州师范学院计算机科学与工程系,福建漳州363000

出  处:《漳州师范学院学报(自然科学版)》2012年第1期43-47,共5页Journal of ZhangZhou Teachers College(Natural Science)

基  金:国家自然科学基金资助项目(61170129)

摘  要:KNN算法通过近邻样本的个数分类,Entropy-KNN算法给出新的相似度定义,而且投票时综合待测样本与近邻样本的个数和各类近邻的平均距离,但两种算法均未考虑近邻样本间的相似.提出的基于层次聚类法的Entropy-KNN算法,首先对训练集按类别进行层次聚类,接着在与待测样本最相似的子类中选取近邻样本,使得近邻样本具有较高的相似度,最后结合Entropy-KNN算法进行分类.在蘑菇数据集上的实验结果表明,该算法的分类准确率高于Entropy-KNN算法.The class label of the test sample on KNN is decided by the K nearest neighbors numbers on the respective class. On algorithm Entropy-KNN, we not only define a distance of the two samples, but also decide the class label of the test sample by the average distance and the numbers on the respective class. But they are not focus on the similarity degree of the K nearest neighbors, which is useful to the class label of the test sample. On the contrary, we propose Entropy-KNN algorithm Based on clustering. At first, the samples of the different class label are clustered. Second, we select the K nearest neighbors from the child clusters, which is nearest to the test sample. Finally, we decide the class label of the test sample by algorithm Entropy-KNN. We perform our experiments on mushroom data set. The experimental results show that our approach has much better than algorithm Entropy-KNN.

关 键 词:分类 KNN算法 信息熵 聚类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象