检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁文博[1] 相秉仁[1] 赵陆华[1] 于丽燕[1]
机构地区:[1]中国药科大学分析测试中心,药物质量与安全预警教育部重点实验室,南京210009
出 处:《中国药科大学学报》2012年第2期164-169,共6页Journal of China Pharmaceutical University
基 金:广东省教育厅产学研结合项目资助(No.2007A090302100)~~
摘 要:选择经Rubberband 64点基线校正和二阶导数(平滑窗口为17,拟合阶数为2)预处理的近红外漫反射光谱,采用Boosting偏最小二乘法(PLS),利用5个子模型建立了番茄表层硫丹残留量预测模型,并对模型的预测性能进行验证。模型的定标系数为0.992,预测残留量范围为5.1~134.1 ng,预测均方根误差(RMSEP)和校正均方误差(RMSECV)分别为2.79和2.82,训练集和预测集的回收率范围分别为(100.1±1.4)%和(98.9±2.6)%。结果表明:本法快速、准确,有望成为新的蔬菜表层农药残留监测方法。A rapid method based on near infrared diffuse reflectance spectroscopy was established for the detection of endosulfan residue on tomato pericarp.A Boosting partial least square(Boosting-PLS) regression was applied for building the quantitative models with second derivatives(polynomial order=2,width of the window=17 points) and Rubberband baseline correction(n=64) as the pre-processing method.Promising results were achieved with determination coefficent of 0.992 and the root mean square error of cross validation/prediction(RMSECV and RMSEP) of 2.82/2.79.The confidence interval(α=0.05) of average recoveries for calibration and prediction sets were(101.1±1.4)% and(98.9±2.6)%,respectively.The method showed the potential of being a rapid,economical and environmentally acceptable method for detecting endosulfan residue on fruit pericarp.
关 键 词:硫丹 近红外光谱技术 残留检测 Boosting偏最小二乘法 共识策略
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3