Discovery of Balmer broad absorption lines in the quasar LBQS 1206+1052  

Discovery of Balmer broad absorption lines in the quasar LBQS 1206+1052

在线阅读下载全文

作  者:Tuo Ji Ting-Gui Wang Hong-Yan Zhou Hui-Yuan Wang 

机构地区:[1]Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China (USTC), Hefei 230026, China [2]Center for Astrophysics, USTC, Hefei 230026, China [3]Polar Research Institute of China, Shanghai 200136, China

出  处:《Research in Astronomy and Astrophysics》2012年第4期369-382,共14页天文和天体物理学研究(英文版)

基  金:supported by the National Natural Science Foundation of China(Grants Nos.10973013 and 11033007);the Fundamental Research Funds for the Central Universities through grant WK 2030220006;the SOA project CHINARE2012-02-03;Funding for the SDSS and SDSS-Ⅱ has been provided by the Alfred P.Sloan Foundation;the Participating Institutions;the National Science Foundation;the U.S. Department of Energy;the National Aeronautics and Space Administration;the Japanese Monbukagakusho;the Max Planck Society;the Higher Education Funding Council for England

摘  要:We report the discovery of Balmer broad absorption lines (BALs) in the quasar LBQS 1206+1052 and present a detailed analysis of the peculiar absorption line spectrum. Besides the Mg II λλ2796, 2803 doublet, BALs are also detected in the He I* multiplet at λλ2946, 3189, 3889 A arising from the metastable helium 2 3 S level, and in Hα and Hβ from the excited hydrogen H I* n = 2 level, which are rarely seen in quasar spectra. We identify two components in the BAL troughs of v ~ 2000 km s 1 width: One component shows an identical profile in H I*, He I* and Mg II with its centroid blueshifted by v c ≈ 726 km s-1 . The other component is detected in He I* and Mg II with v c ≈ 1412 km s-1 . We estimate the column densities of H I*, He I*, and Mg II, and compare them with possible level population mechanisms. Our results favor the scenario that the Balmer BALs originate in a partially ionized region with a column density of N H ~ 10 21 10 22 cm-2 for an electron density of n e ~ 10 6 10 8 cm-3 via Lyα resonant scattering pumping. The harsh conditions needed may help to explain the rarity of Balmer absorption line systems in quasar spectra. With an i-band PSF magnitude of 16.50, LBQS 1206+1052 is the brightest Balmer-BAL quasar ever reported. Its high brightness and unique spectral properties make LBQS 1206+1052 a promising candidate for followup high-resolution spectroscopy, multi-band observations, and long-term monitoring.We report the discovery of Balmer broad absorption lines (BALs) in the quasar LBQS 1206+1052 and present a detailed analysis of the peculiar absorption line spectrum. Besides the Mg II λλ2796, 2803 doublet, BALs are also detected in the He I* multiplet at λλ2946, 3189, 3889 A arising from the metastable helium 2 3 S level, and in Hα and Hβ from the excited hydrogen H I* n = 2 level, which are rarely seen in quasar spectra. We identify two components in the BAL troughs of v ~ 2000 km s 1 width: One component shows an identical profile in H I*, He I* and Mg II with its centroid blueshifted by v c ≈ 726 km s-1 . The other component is detected in He I* and Mg II with v c ≈ 1412 km s-1 . We estimate the column densities of H I*, He I*, and Mg II, and compare them with possible level population mechanisms. Our results favor the scenario that the Balmer BALs originate in a partially ionized region with a column density of N H ~ 10 21 10 22 cm-2 for an electron density of n e ~ 10 6 10 8 cm-3 via Lyα resonant scattering pumping. The harsh conditions needed may help to explain the rarity of Balmer absorption line systems in quasar spectra. With an i-band PSF magnitude of 16.50, LBQS 1206+1052 is the brightest Balmer-BAL quasar ever reported. Its high brightness and unique spectral properties make LBQS 1206+1052 a promising candidate for followup high-resolution spectroscopy, multi-band observations, and long-term monitoring.

关 键 词:GALAXIES active -- quasar absorption lines -- quasar individual (LBQS1206+1052) 

分 类 号:P158[天文地球—天文学] P153

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象