出 处:《Research in Astronomy and Astrophysics》2012年第4期400-410,共11页天文和天体物理学研究(英文版)
基 金:supported by the National Natural Science Foundation of China (Grant Nos.10973020, 40890161 and 10921303);the National Basic Research Program of China (973 Program, Grant No.2011CB811406)
摘 要:The relationships between solar flare parameters (total importance, time duration, flare index, and flux) and sunspot activity (R z ) as well as those between geomagnetic activity (aa index) and the flare parameters can be well described by an integral response model with the response time scales of about 8 and 13 months, respectively. Compared with linear relationships, the correlation coefficients of the flare parameters with R z , of aa with the flare parameters, and of aa with R z based on this model have increased about 6%, 17%, and 47% on average, respectively. The time delays between the flare parameters with respect to R z , aa to the flare parameters, and aa to R z at their peaks in a solar cycle can be predicted in part by this model (82%, 47%, and 78%, respectively). These results may be further improved when using a cosine filter with a wider window. It implies that solar flares are related to the accumulation of solar magnetic energy in the past through a time decay factor. The above results may help us to understand the mechanism of solar flares and to improve the prediction of the solar flares.The relationships between solar flare parameters (total importance, time duration, flare index, and flux) and sunspot activity (R z ) as well as those between geomagnetic activity (aa index) and the flare parameters can be well described by an integral response model with the response time scales of about 8 and 13 months, respectively. Compared with linear relationships, the correlation coefficients of the flare parameters with R z , of aa with the flare parameters, and of aa with R z based on this model have increased about 6%, 17%, and 47% on average, respectively. The time delays between the flare parameters with respect to R z , aa to the flare parameters, and aa to R z at their peaks in a solar cycle can be predicted in part by this model (82%, 47%, and 78%, respectively). These results may be further improved when using a cosine filter with a wider window. It implies that solar flares are related to the accumulation of solar magnetic energy in the past through a time decay factor. The above results may help us to understand the mechanism of solar flares and to improve the prediction of the solar flares.
关 键 词:Sun: activity -- Sun: sunspots -- Sun: flares -- geomagnetic activity
分 类 号:P315.5[天文地球—地震学] P182.52[天文地球—固体地球物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...