Adaptive associative classification with emerging frequent patterns  

Adaptive associative classification with emerging frequent patterns

在线阅读下载全文

作  者:Wang Xiaofeng Zhang Dapeng Shi Zhongzhi 

机构地区:[1]The Key Laboratory of Intelligent Information Processing,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,P.R.China [2]Graduate University of Chinese Academy of Sciences,Beijing 100049,P.R.China [3]Institute of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,P.R.China

出  处:《High Technology Letters》2012年第1期38-44,共7页高技术通讯(英文版)

基  金:Supported by the National High Technology Research and Development Program of China (No. 2007AA01Z132); the National Natural Science Foundation of China (No.60775035, 60933004, 60970088, 60903141); the National Basic Research Priorities Programme (No. 2007CB311004); the National Science and Technology Support Plan (No.2006BAC08B06).

摘  要:In this paper, we propose an enhanced associative classification method by integrating the dynamic property in the process of associative classification. In the proposed method, we employ a support vector machine(SVM) based method to refine the discovered emerging ~equent patterns for classification rule extension for class label prediction. The empirical study shows that our method can be used to classify increasing resources efficiently and effectively.

关 键 词:associative classification RULE frequent pattern mining emerging frequent pattern supportvector machine (SVM) 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论] TQ013.1[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象