检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东大学威海分校数学与统计学院,威海264209 [2]哈尔滨工业大学(威海)数学系,威海264209
出 处:《黑龙江大学自然科学学报》2012年第2期149-151,159,共4页Journal of Natural Science of Heilongjiang University
摘 要:定义外强素环,即一个环R的每个非零理想包含一个有限子集G,使得由rGr=0,r∈R可推出r=0。所有外强素环组成的环类所确定的上根称为外强素根。证明下列主要结论:A.外强素环一定是右(左)强素环;B.外强素环的每个非零理想也是外强素环;C.外强素环类本质扩张闭的;D.设(S,W,V,T)是一个Morita-Context且VW=S,WV=T,其中S,T是两个有1的环,如果I是S的一个理想,使得S/I是外强素环,那么T/J也是外强素环,其中J=WIV。A ring R are called an external strongly prime ring,if every non-zero idea of R contains a finite subset G,such that rGr=0,r∈R,implies r=0.Upper radical determined by the class of all the external strongly prime rings is called the external strongly prime radical.It is shown that:A.An external strongly prime ring is right(left) strongly prime ring;B.Any non-zero ideal of external strongly prime rings is an external strongly prime ring;C.The essential extensions of the class of external strongly prime rings are again external strongly prime rings;D.Let(S,V,W,T) be a Morita-context with VW=S,WV=T,where S and T are rings with 1,if I is an ideal of S,such that S/I is an external strongly prime ring,then T/J is also an external strongly prime ring,where J=WIV.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7