Conjugate Heat Transfer Characterization in Cooling Channels  

Conjugate Heat Transfer Characterization in Cooling Channels

在线阅读下载全文

作  者:Beni Cukurel Tony Arts Claudio Selcan 

机构地区:[1]von Karman Institute for Fluid Dynamics Turbomachinery Department,Chaussée de Waterloo

出  处:《Journal of Thermal Science》2012年第3期286-294,共9页热科学学报(英文版)

基  金:Support financially by the Air Force Office of Scientific Research (AFOSR),Grant FA8655-08-1-3048

摘  要:Cooling technology of gas turbine blades,primarily ensured via internal forced convection,is aimed towards withdrawing thermal energy from the airfoil.To promote heat exchange,the walls of internal cooling passages are lined with repeated geometrical flow disturbance elements and surface non-uniformities.Raising the heat transfer at the expense of increased pressure loss;the goal is to obtain the highest possible cooling effectiveness at the lowest possible pressure drop penalty.The cooling channel heat transfer problem involves convection in the fluid domain and conduction in the solid.This coupled behavior is known as conjugate heat transfer.This experimental study models the effects of conduction coupling on convective heat transfer by applying iso-heat-flux boundary condition at the external side of a scaled serpentine passage.Investigations involve local temperature measurements performed by Infrared Thermography over flat and ribbed slab configurations.Nusselt number distributions along the wetted surface are obtained by means of heat flux distributions,computed from an energy balance within the metal domain.For the flat plate experiments,the effect of conjugate boundary condition on heat transfer is estimated to be in the order of 3%.In the ribbed channel case,the normalized Nusselt number distributions are compared with the basic flow features.Contrasting the findings with other conjugate and convective iso-heat-flux literature,a high degree of overall correlation is evident.

关 键 词:conjugate heat transfer turbine cooling channel CONVECTION infrared thermography 

分 类 号:TK124[动力工程及工程热物理—工程热物理] TF321.4[动力工程及工程热物理—热能工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象