针对密集点云的快速曲面重建算法  被引量:11

Rapid Surface Reconstruction Algorithm from Dense Point Cloud

在线阅读下载全文

作  者:聂建辉[1] 马孜[1] 胡英[1] 陈新禹[1] 

机构地区:[1]大连海事大学自动化研究中心,大连116026

出  处:《计算机辅助设计与图形学学报》2012年第5期574-582,共9页Journal of Computer-Aided Design & Computer Graphics

基  金:国家科技重大专项(2009ZX04001-021)

摘  要:为了能够快速地从高密度散乱点云生成三角形网格曲面,提出一种针对散乱点云的曲面重建算法.首先通过逐层外扩建立原始点云的近似网格曲面,然后对近似网格曲面进行二次剖分生成最终的精确曲面;为了能够处理噪声点云,在剖分过程中所有网格曲面顶点都通过层次B样条进行了优化.相比于其他曲面重建方法,该算法剖分速度快,且能够保证点云到所生成的三角网格曲面的距离小于预先设定容限.实验结果表明,文中算法能够有效地实现高密度散乱点云的三角剖分,且其剖分速度较已有算法有大幅提高.In order to triangulate a dense scattered point cloud efficiently,a novel surface reconstruction method is proposed.The algorithm presented consists of two steps: Firstly,an initial triangle mesh is constructed by repeating a simple advancing front rule.Then,initial triangles are subdivided to obtain the final accurate surface and triangle vertexes are refined by means of Multilevel B-spline fitting.Compared with other popular methods,the subdivide speed is a significant advantage of the algorithm.Besides,the algorithm guarantees that the distance from original points to the result mesh is within a predefined tolerance.Several experiments based on real scan data are used to evaluate the efficiency of this algorithm and the speed advantage is demonstrated by the comparison with other popular algorithms.

关 键 词:散乱点云 曲面重建 三角化 外扩 

分 类 号:TP391.72[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象