检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学电力学院广州510640 [2]安庆供电公司安庆246003
出 处:《电工技术学报》2012年第4期185-192,共8页Transactions of China Electrotechnical Society
基 金:国家自然科学基金(50807016,511770551);清华大学国家重点实验室开放项目(SKLD10KM01);中央高校基本业务费重点项目资助
摘 要:针对传统最优潮流算法对复杂多目标函数的不适应性以及常规算法难以满足大规模电网计算实时性的要求,本文中提出一种新颖的基于复杂电网分区的最优潮流分布式Q(λ)学习算法,该算法无须对最优潮流数学模型进行辅助处理,不依赖于对象模型,其内部各Agent使用标准的多步Q(λ)算法独立承担各分区子系统的学习任务,通过统一协作从而形成整体意义上的最优,并在IEEE 118节点等标准算例中进行了验证,取得了良好的效果,为解决复杂电网多目标最优潮流问题提供了一种新的可行、有效的方法。As for the problem that usual optimal power flow algorithm can not meet the timely demand of the complex power grid.,this paper presents a novel distributed Q(λ) learning algorithm based on complex districted power grid,which deals no auxiliary process with the optimal power flow(OPF) mathematical model and whose internal agent independently undertakes each district's learning duty with the standard multi-step Q(λ) learning algorithm,and then coordinately cooperate to reach the optimization of the whole system.The result of the application in IEEE118 bus bar demonstrates that the distributed Q(λ) learning algorithm provides a new feasible and effective method to the complex grid OPF problem.
关 键 词:最优潮流 Q(λ)学习 多目标优化 分布式强化学习
分 类 号:TM761[电气工程—电力系统及自动化] TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.172.251