机会网络动态社团的预测  被引量:1

Forecasting Dynamic Communities in Opportunistic Networks

在线阅读下载全文

作  者:蔡君[1,2] 余顺争[1] 

机构地区:[1]中山大学信息科学与技术学院电子与通信工程系,广州510275 [2]广东技术师范学院电子与信息学院,广州510665

出  处:《小型微型计算机系统》2012年第5期1047-1052,共6页Journal of Chinese Computer Systems

基  金:国家"八六三"高技术研究发展计划项目(2007AA01Z449)资助;国家自然科学基金项目-广东联合基金重点项目(60970146)资助;国家自然科学基金项目(U0735002)资助

摘  要:由于人们之间社会关系相对稳定并且存在一定的依赖性,由人携带设备组成的机会网络中会出现节点的聚集现象,从而表现出很好的社团特性.提出一种应用贝叶斯-蒙特卡洛(Bayesian-MCMC)预测机会网络节点社团分配的新方法,并在两个不同地点的机会网络数据集上对该方法进行了评估,实验结果显示,此方法能对机会网络中的社团演变进行预测,达到了很高的准确率,且具有良好的鲁棒性.对机会网络社团快速准确的预测有利于机会网络中节点的管理,消息的传输,资源的分配,并可以为探索由人携带设备组成的机会网络这类场景的移动模型的数学分析提供理论依据.As a result of the relative stability and the dependence of social relations between people,the nodes in opportunistic networks appear clustering phenomena and the opportunistic networks demonstrated good community properties.A new method for predicting the distribution of node′s community,based on Bayesian-Monte Carlo(Bayesian-MCMC),is proposed in this paper.This method is evaluated through opportunistic network′s data collected from two different locations.Experimental results show that this method can detect communities in the opportunistic networks and predict its time evolution,which achieve a high accuracy and high robustness.Quickly and accurately detecting and forecasting the communities in opportunistic networks are beneficial to network node management,message transmission,resources allocation and providing a theoretical background of exploring the mathematical model on opportunistic networks constituted by people carrying equipment.

关 键 词:机会网络 动态社团 贝叶斯-蒙特卡洛 复杂网络 吉布斯抽样 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象