带脉冲控制的给定流形的混沌广义同步  

Impulsive Generalized Synchronization of Chaotic Systems with Given Manifold

在线阅读下载全文

作  者:江正仙[1] 丁建旭[1] 过榴晓[1] 徐振源[1] 

机构地区:[1]江南大学理学院,江苏无锡214122

出  处:《计算机仿真》2012年第5期183-187,共5页Computer Simulation

基  金:江南大学青年基金资助(573);国家自然科学青年基金(11002061)

摘  要:提出了新的带脉冲控制的双向耦合混沌系统,根据脉冲微分方程稳定性理论,研究了耦合混沌系统的给定流行的广义同步问题。混沌系统的广义同步研究通常是要考虑混沌系统是满足Lipschitz条件的,但实际上混沌吸引子的边界一般是难以准确得到的。在研究广义同步过程中,采用新的构造方法则不需要以混沌吸引子的具体边界为条件,通过理论证明,得到了混沌系统模型实现广义同步的充分而非保守条件。同时,采用混沌和超混沌系统,给定线性和非线性流形分别进行了数值仿真,所得结果表明理论是有效的。The new schemes of bi-coupled chaotic systems via impulsive control were proposed in this paper. Based on impulsive differential equation stability theory, the problem of bi-coupled generalized synchronization with a given manifold was studied. Lipschitz conditions of chaotic systems often ensure the occurrence of generalized synchronization. However, it is difficult to get the accurate value of the boundaries of chaotic systems. In this paper, the specific boundaries of chaotic attractors are not necessary to investigate generalized synchronization. Simple and less conservative criteria were achieved for generalized synchronization in bi-coupled chaotic systems with a given mani- fold. Numerical simulations of chaotic or hyper-chaotic systems with linear or nonlinear manifolds further demonstrates the effectiveness of the scheme.

关 键 词:混沌 广义同步 双向耦合 脉冲控制 超混沌 

分 类 号:O231.2[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象