检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:江正仙[1] 丁建旭[1] 过榴晓[1] 徐振源[1]
出 处:《计算机仿真》2012年第5期183-187,共5页Computer Simulation
基 金:江南大学青年基金资助(573);国家自然科学青年基金(11002061)
摘 要:提出了新的带脉冲控制的双向耦合混沌系统,根据脉冲微分方程稳定性理论,研究了耦合混沌系统的给定流行的广义同步问题。混沌系统的广义同步研究通常是要考虑混沌系统是满足Lipschitz条件的,但实际上混沌吸引子的边界一般是难以准确得到的。在研究广义同步过程中,采用新的构造方法则不需要以混沌吸引子的具体边界为条件,通过理论证明,得到了混沌系统模型实现广义同步的充分而非保守条件。同时,采用混沌和超混沌系统,给定线性和非线性流形分别进行了数值仿真,所得结果表明理论是有效的。The new schemes of bi-coupled chaotic systems via impulsive control were proposed in this paper. Based on impulsive differential equation stability theory, the problem of bi-coupled generalized synchronization with a given manifold was studied. Lipschitz conditions of chaotic systems often ensure the occurrence of generalized synchronization. However, it is difficult to get the accurate value of the boundaries of chaotic systems. In this paper, the specific boundaries of chaotic attractors are not necessary to investigate generalized synchronization. Simple and less conservative criteria were achieved for generalized synchronization in bi-coupled chaotic systems with a given mani- fold. Numerical simulations of chaotic or hyper-chaotic systems with linear or nonlinear manifolds further demonstrates the effectiveness of the scheme.
分 类 号:O231.2[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198