检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学计算机科学与技术学院,武汉430074
出 处:《计算机学报》2012年第1期27-37,共11页Chinese Journal of Computers
基 金:国家自然科学基金(70672041);湖北省自然科学基金(2007ABA307);中央高校基本科研业务费(2010MS112)资助~~
摘 要:电子商务环境中交易实体间的信任关系类似于传统商务环境中复杂的社会关系.实体间的信任度量涉及到交易额、交易发生时间、消费实体个人收入及其对信任的风险态度等因素,难以准确地给出量化计算.为探明这种信任关系的本质特点,结合现实生活中社会关系网络的一些认知理论和方法,详细分析和定义了实体及实体关系的相关属性,提出了一种信任网络描述的形式化模型.研究了信任网络的构造方法,建立了一套信任网络优化算法,有效地降低了信任网络的复杂性.最后,给出了一套信任网络可视化自动生成工具,通过实例应用分析表明,信任网络形式化描述模型和优化算法可以很好地揭示电子商务环境中复杂的信任关系,降低了信任度量算法的复杂度,可为信任的传播机制和信任计算模型的研究提供理论基础.In e-commerce systems,the trust relationships between transaction entities are very complex as the social relationships in the traditional business environment.The trust evaluation is concerned with many factors,such as the volume of transactions,the trading time,the revenue of buyers,the attitude to trust risk,and so on.Therefore,it is very hard to be computed quantitatively and accurately.In order to explore the essential features of the trust relationships,some concepts of trust and trust relationships are defined in terms of human cognitive methods and behaviors in society.Also,this paper presents a formal description model based on the trust network.Considering to the reputation propagation discipline,this paper proposes optimization algorithms for the trust network which can effectively simplify the complex network relationship.Finally,a visual generation tool for the trust network is given.The practical application example shows that the formal description model and the optimization algorithms can intuitively show the complex trust relationships in e-commerce systems,reduce the complexity of trust computing algorithm,and build the theoretical principle for studying on trust propagation mechanism and trust evaluation model.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.148.76