检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京大学计算机软件新技术国家重点实验室,江苏南京210093 [2]南京师范大学语言信息科技研究中心,江苏南京210097
出 处:《中文信息学报》2012年第3期65-71,103,共8页Journal of Chinese Information Processing
基 金:先秦文献词汇知识挖掘资助项目(2010JDXM023);211项目"先秦汉语词汇统计与知识检索";国家社会科学基金资助项目(10&ZD117;10CYY021;08BYY054)
摘 要:词义消歧是自然语言处理中的一项基础任务,古汉语信息处理也急需深层次的语义标注工作。该文针对先秦古汉语这一特殊的语言材料,在训练语料和语义资源匮乏的条件下,采用《汉语大词典2.0》作为知识来源,将其词条释义作为义类,每个义项的例句作为训练语料,使用基于支持向量机(SVM)的半指导方法对《左传》进行全文的词义标注。按照频度不同、义项数量不同的原则,我们随机选取了22个词进行了人工检查,平均正确率达到67%。该方法可以广泛用于缺乏训练语料的古汉语义项标注工作,能够在古汉语全文词义标注的起步阶段提供初始结果,为人工标注词语义项提供良好的数据底本,补正传统词典释义不全的问题,进一步丰富汉语史发展研究资料。Word Sense Disambiguation(WSD) is a basic task of Natural Language Processing,including the processing of ancient Chinese documents.In this paper we focuse on the specific field of analyzing pre-Qin ancient Chinese documents.Considering the shortage of training data and semantic resources,we employe a semi-supervised machine learning method to perform all-word WSD of Zuo Zhuan and use Chinese Dictionary v2.0 as the knowledge resource.We randomly selecte 22 words of different frequency and sense number to evaluate the proposed method.On the selected words,our method achieves an average accuracy of 67%,which is significant higher than the baseline method of selecting the most frequent sense.This method is promising for sense tagging of ancient Chinese documents when there is no training data available.It also provides a raw sense tagging result for human correction,enriching traditional dictionaries which usually suffer from insufficient word sense entries.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117