检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北师范大学数学与信息科学学院,甘肃兰州730070
出 处:《数学的实践与认识》2012年第9期214-219,共6页Mathematics in Practice and Theory
基 金:甘肃省教育厅基金(0501-03)
摘 要:提出了有向图的SAS-全染色的概念,有向图D的SAS-全染色是D的一个正常全染色,若对D中点染色来说,不存在长为3的2色有向路.对D中弧染色来说,不存在长为4的2色有向路.并定义了有向图D的SAS-全色数,记为(D).用构造染色的方法给出了一些特殊有向图(有向路,有向圈,定向轮,定向扇,有向双星)的SAS-全色数.The SAS-total coloring on digraphs is presented. A proper total coloring of a digraph is called SAS-total coloring if it has no 2-colored directed path of length 3 for vertices coloring , and it has no 2-colored directed path of length 4 for arc coloring. And defined the SAS-total chromatic number of D, denoted by Хsas^T^→(D). We show the SAS-total chromatic number of some particular digraphs(directed path, directed cycle, directed wheel, directed fan, directed bistar) by the methods of coloring construct in this article.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28