基于NDVI的喀斯特水资源遥感定量监测及分析——以贵州省为例  被引量:9

Quantitative Remote Sensing Monitoring and Analysis of Karst Water Resources Based on NDVI——Taking Guizhou Province as a Case

在线阅读下载全文

作  者:贺中华[1,2] 陈晓翔[1] 梁虹[2] 黄法苏 赵芳 

机构地区:[1]中山大学地理科学与规划学院,广州510275 [2]贵州师范大学地理与环境科学学院,贵阳550001 [3]贵州省水文水资源局,贵阳550002 [4]贵州省贵阳市白云区职业技术学校,贵阳550014

出  处:《水土保持研究》2012年第3期161-165,共5页Research of Soil and Water Conservation

基  金:贵州省教育厅基金(黔教科20090039;2006307);贵州省科技厅基金(黔科合J字[2010]2026号);贵州省水利厅基金(KT201010;KT201105;KT200802)

摘  要:喀斯特是一类脆弱的生态环境,水资源是脆弱生态环境的重要组成部分,NDVI是流域赋水状况及空间分布的重要指标,因此,喀斯特水资源监测是研究脆弱生态环境的重要内容。在贵州省内选择20个流域作为研究样区,根据Landsat TM的植被光谱特征,利用遥感技术,提取LNDVI和ρNDVI;利用数学分析方法,建立喀斯特流域水资源监测模型。通过分析得出:①植被覆盖率是喀斯特流域赋水的重要指标;②利用地物表观反射率的归一化植被指数(ρNDVI)对喀斯特流域水资源进行监测,效果更好、精度更高;③建立了喀斯特水资源遥感监测模型。Karst is a vulnerable eco-environment. Water resources are important part of the fragile eco-envi- ronment. NDVI is the importance index of the Karst Basin water-holding condition and spatial distribution, therefore, to monitor the karst water resources is an important behavior of studying the vulnerable eco-envi- ronment. 20 watersheds were selected as the study areas in Guizhou Province in this paper. According to Landsat TM spectral characteristics of vegetation, LNDVI and pNDVI were extracted by using remote sens- ing techniques. The model of karst drainage basin water resources monitoring was established by using math- ematical analysis. It could be obtained by the analysis that the vegetation coverage was an important indicator of the karst basin water-holding, the karst basin water resources monitoring by using surface feature apparent reflectance of the normalized difference vegetation index was better results and higher accuracy, and the remote sensing monitoring model of karst water resources was established.

关 键 词:喀斯特流域 喀斯特水资源 LANDSAT TM影像 NDVI 监测预测模型 

分 类 号:TV211.13[水利工程—水文学及水资源] P208.2[天文地球—地图制图学与地理信息工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象