检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:M·娜扎 F·沙希德 M·S·阿克拉姆 Q·苏丹 黄锋
机构地区:[1]巴豪丁-扎卡利亚大学理论与应用数学高级研究中心 木尔坦 巴基斯坦
出 处:《应用数学和力学》2012年第6期678-691,共14页Applied Mathematics and Mechanics
基 金:巴基斯坦高等教育委员会资助项目:"比率型流体在振荡矩形输送管道中的流动"
摘 要:分析了不可压缩Maxwell流体在震荡矩形截面管道中的非稳定流动问题.利用Fourier变换和Laplace变换作为数学工具,提出了问题的解,该解可以看成稳态解和暂态解之和.大倍数时,暂态消失,解可以表示为稳态解.在极限情况的案例中给出了Newton流体的解.当震荡频率不存在时,得到了Maxwell流体在震荡矩形截面管道中流动问题的解.最后,以图形形式给出不同参数时,矩形管道正弦震荡达到稳态所需要的时间.同时,分别描绘了x和y变化时的速度曲线.An analysis for the unsteady flow of an incompressible Maxwell fluid in an oscillating rectangular cross section was presented.Using the Fourier and Laplace transforms as mathematical tool,the solutions were presented as sum of steady-state and transient solutions.For large times,when the transients disappear,the solution was represented by the steady-state solution.Solutions for Newtonian fluids appear as limiting cases of the solutions obtained here.In the absence of frequency of oscillation,the problem for flow of Maxwell fluid in a duct of rectangular cross-section moving parallel to its length was obtained.Finally,the required time to reach the steady-state for sine oscillations of the rectangular duct is obtained by graphical illustrations for different parameters.Moreover,the graphs are sketched for velocity for the variations of x and y.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7