基于Echo State Neural Networks的短期交通流预测算法  

Algorithm for Short-term Traffic Flow Prediction Based on Echo State Neural Networks

在线阅读下载全文

作  者:宋炯[1] 李佑慧[1] 朱文军[1] 赵文珅[1] 

机构地区:[1]云南交通职业技术学院,昆明650101

出  处:《价值工程》2012年第18期175-177,共3页Value Engineering

摘  要:在城市交通环境,交通流的正确预测是比较困难,因为多个十字路口,这使得预置的交通控制模型之间的相互作用和intertwinement不能保持始终高性能在所有的交通情况。An algorithm for short term traffic flaw prediction based on echo state neural networks (ESN) is proposed in this paper. ESN is a new paradigm for using recurrent neural networks (RNNs) with a simpler training method. While the prediction, traffic flow patterns are treated as time series signals; no further information is used than the past traffic flaw data records, such as weather, traffic accidents. The relation between key parameter of the ESN and the predicting performance is discussed; ESN and feed forward neural network (FNN) are compared with the same task also. Simulation experiment results demonstrate that the proposed ESN algorithm is valid and can obtain more accurate predictingresults than the FNN for the short-term traffic flaw prediction problem.

关 键 词:回声状态网络(ESN) 交通流量 预测 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象