检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学电子工程学院,陕西西安710071
出 处:《西安电子科技大学学报》2012年第3期50-57,79,共9页Journal of Xidian University
基 金:国家863高技术研究发展计划资助项目(2007AA12Z323);国家自然科学基金资助项目(60772139);教育部高等学校博士学科点专项科研基金资助项目(200807011007);中央高校基本科研业务费资助项目(K50510020010)
摘 要:为了优化压缩采样匹配追踪算法的性能,提出一种压缩采样修正匹配追踪贪婪自适应算法.该算法采用了具有理论保证的模糊阈值预选方案以避免预选时使用信号的先验信息,设置了初次裁剪门限以减少不必要的迭代,改进了裁剪方式以尽可能地提高重构精度,同时避免了裁剪阶段使用先验信息,最终实现了可压缩信号的自适应重构.仿真结果表明:在同等稀疏条件下实现了精确重构,该算法与原算法相比运算速度提高了2倍,所需观测值个数少1%,并且在稀疏度较高的情况下,该算法对噪声的抗干扰能力也优于原算法.In order to optimize the performance of Compressive Sampling Matching Pursuit (CoSaMP), the Compressive Sampling Modifying Matching Pursuit greedy adaptive algorithm (CoSaMMP) is proposed. Compared with the original CoSaMP, the algorithm adopts the fuzzy threshold preliminary rule with theoretical guarantee to avoid using apriori information on signals in the primary election phase, sets the initial pruning threshold to reduce unnecessary iterations, improves the pruning mode to enhance the recovery accuracy and avoid using apriori information on signals in the pruning phase, and finally realizes adaptive recovery for compressible signals. Simulation results show that for the same sparsity level, the operation speed of CoSaMMP increases by 2 fold compared with the initial algorithm, and that the required measurement number decreases about 1%, In addition, under the conditions of the high sparsity level, the algorithm have the better anti-interference ability than the initial one.
关 键 词:压缩感知 压缩采样匹配追踪 模糊阈值 约束等距性
分 类 号:TN911.72[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.72