Extension of Isometries on the Unit Sphere of L^p Spaces  被引量:3

Extension of Isometries on the Unit Sphere of L^p Spaces

在线阅读下载全文

作  者:Dong Ni TAN 

机构地区:[1]Department of Mathematics,Tianjin University of Technology [2]School of Mathematical Science,Nankai University

出  处:《Acta Mathematica Sinica,English Series》2012年第6期1197-1208,共12页数学学报(英文版)

基  金:Supported by the Fundamental Research Funds for the Central Universities;National Natural Science Foundation of China (Grant No. 10871101)

摘  要:In this paper we study the isometric extension problem and show that every surjective isometry between the unit spheres of L^p(μ) (1 〈 p 〈∞, p ≠ 2) and a Banach space E can be extended to a linear isometry from L^p(μ) onto E, which means that if the unit sphere of E is (metrically) isometric to the unit sphere of L^P(μ), then E is linearly isometric to L^p(μ). We also prove that every surjective 1-Lipschitz or anti-l-Lipschitz map between the unit spheres of L^p(μ1, H1) and L^p(μ2, H2) must be an isometry and can be extended to a linear isometry from L^p(μ2, H2) to L^p(μ2, H2), where H1 and H2 are Hilbert spaces.In this paper we study the isometric extension problem and show that every surjective isometry between the unit spheres of L^p(μ) (1 〈 p 〈∞, p ≠ 2) and a Banach space E can be extended to a linear isometry from L^p(μ) onto E, which means that if the unit sphere of E is (metrically) isometric to the unit sphere of L^P(μ), then E is linearly isometric to L^p(μ). We also prove that every surjective 1-Lipschitz or anti-l-Lipschitz map between the unit spheres of L^p(μ1, H1) and L^p(μ2, H2) must be an isometry and can be extended to a linear isometry from L^p(μ2, H2) to L^p(μ2, H2), where H1 and H2 are Hilbert spaces.

关 键 词:Tingley's problem 1-Lipschitz anti-l-Lipschitz ISOMETRY isometric extension 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象