检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Dong Ni TAN
机构地区:[1]Department of Mathematics,Tianjin University of Technology [2]School of Mathematical Science,Nankai University
出 处:《Acta Mathematica Sinica,English Series》2012年第6期1197-1208,共12页数学学报(英文版)
基 金:Supported by the Fundamental Research Funds for the Central Universities;National Natural Science Foundation of China (Grant No. 10871101)
摘 要:In this paper we study the isometric extension problem and show that every surjective isometry between the unit spheres of L^p(μ) (1 〈 p 〈∞, p ≠ 2) and a Banach space E can be extended to a linear isometry from L^p(μ) onto E, which means that if the unit sphere of E is (metrically) isometric to the unit sphere of L^P(μ), then E is linearly isometric to L^p(μ). We also prove that every surjective 1-Lipschitz or anti-l-Lipschitz map between the unit spheres of L^p(μ1, H1) and L^p(μ2, H2) must be an isometry and can be extended to a linear isometry from L^p(μ2, H2) to L^p(μ2, H2), where H1 and H2 are Hilbert spaces.In this paper we study the isometric extension problem and show that every surjective isometry between the unit spheres of L^p(μ) (1 〈 p 〈∞, p ≠ 2) and a Banach space E can be extended to a linear isometry from L^p(μ) onto E, which means that if the unit sphere of E is (metrically) isometric to the unit sphere of L^P(μ), then E is linearly isometric to L^p(μ). We also prove that every surjective 1-Lipschitz or anti-l-Lipschitz map between the unit spheres of L^p(μ1, H1) and L^p(μ2, H2) must be an isometry and can be extended to a linear isometry from L^p(μ2, H2) to L^p(μ2, H2), where H1 and H2 are Hilbert spaces.
关 键 词:Tingley's problem 1-Lipschitz anti-l-Lipschitz ISOMETRY isometric extension
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222