检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Madad KHAN Saima ANIS
机构地区:[1]Department of Mathematics,COMSATS Institute of Information Technology
出 处:《Acta Mathematica Sinica,English Series》2012年第7期1461-1468,共8页数学学报(英文版)
基 金:Financially supported by Higher Education Commission of Pakistan
摘 要:In this paper, we have decomposed an AG-groupoid. Let S be an AG-groupoid with left identity and a relation γ be defined on S as: aγb if and only if there exist positive integers m and n such that b^m∈E (Sa)S and a^n ∈ (Sb)S for all a and b in S. We have proved that S/γ is a maximal separative Semilattice homomorphic image of S. Every AG-groupoid S is uniquely expressible as a semilattice Y of archimedean AG-groupoids Sa (a∈ Y). The semilattice Y is isomorphic to S/γ and the Sγ (a ∈ Y) are the equivalence classes of S mod V.In this paper, we have decomposed an AG-groupoid. Let S be an AG-groupoid with left identity and a relation γ be defined on S as: aγb if and only if there exist positive integers m and n such that b^m∈E (Sa)S and a^n ∈ (Sb)S for all a and b in S. We have proved that S/γ is a maximal separative Semilattice homomorphic image of S. Every AG-groupoid S is uniquely expressible as a semilattice Y of archimedean AG-groupoids Sa (a∈ Y). The semilattice Y is isomorphic to S/γ and the Sγ (a ∈ Y) are the equivalence classes of S mod V.
关 键 词:AG-groupoid invertive law medial law CONGRUENCE
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42