预测状态表示模型的复位算法  

An Algorithm for Resetting PSR Models

在线阅读下载全文

作  者:刘云龙[1] 吉国力[1] 

机构地区:[1]厦门大学自动化系,福建厦门361005

出  处:《计算机学报》2012年第5期1046-1051,共6页Chinese Journal of Computers

基  金:福建省自然科学基金(2010J05140);高等学校博士学科点专项科研基金(20100121120022);国家自然科学基金(60774033)资助~~

摘  要:预测状态表示(Predictive State Representations,PSRs)是用于解决局部可观测问题的有效方法.然而,现实环境中,通过样本学习得到的PSR模型不可能完全准确.随着计算步数的增多,利用PSR模型计算得到的预测向量有可能越来越偏离其真实值,进而导致PSR模型的预测精度越来越低.文中提出了一种PSR模型的复位算法.通过使用判别分析方法确定系统所处的PSR状态,文中所提算法可对利用计算获取的预测向量复位,从而提高PSR模型的准确性.实验结果表明,采用复位算法的PSR模型在预测精度上明显优于未采用复位算法的PSR模型,验证了所提算法的有效性.Predictive State Representations (PSRs) have been proposed as an alternative to partially observable Markov decision processes (POMDPs) to model dynamical systems. Although POMDPs and PSRs provide general frameworks for solving partially observable problems, in real world applications, when the PSR model of a system is learned from samples, it will almost certainly result in an inaccurate PSR model. Therefore the prediction vector calculated using this model may progressively drift farther and farther away from reality, which will result in lower prediction accuracy of the PSR model. This paper describes an algorithm for resetting the learned PSR models. First, for the inaccurate PSR model, the PSR state is identified using discriminant function analysis, then the calculated prediction vector can be reset for the purpose of improving the veracity of the PSR model. The algorithms with and without resetting the PSR model are compared, empirical results show that in case of the obtained PSR model's prediction quality, the algorithm with resetting the prediction vector has better prediction accuracy than the algorithm without resetting the prediction vector, which proves the effectiveness of the proposed algorithm.

关 键 词:预测状态表示模型 预测精度 复位 判别分析 预测状态表示模型的准确性 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象