检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学数字技术及仪器研究所,浙江杭州310027
出 处:《华南理工大学学报(自然科学版)》2012年第4期64-70,78,共8页Journal of South China University of Technology(Natural Science Edition)
基 金:国家科技支撑计划项目(2009BAF39B03);国家自然科学基金仪器专项资助项目(40927001);浙江大学中央高校基本科研业务费专项资金资助项目
摘 要:为了提高视频质量评价的精确度,降低计算复杂度,提出了一种双域无参考视频质量评价算法.在压缩域,利用从码流中提取的编码信息,结合视频内容复杂度来计算视频相似度;在像素域,结合人类视觉系统的特性,通过块效应和模糊效应评估来计算视频失真度;最后,综合视频相似度和失真度得出视频客观质量.文中选用LIVE Video QualityDatabase对算法效果进行了评估,结果表明:该算法的预测精确性和单调性分别达到0.801 3和0.786 1,优于全部10种对比的视频客观质量评价方法;同时,该算法具有较低的计算复杂度,可以满足实时应用要求.In order to improve the accuracy and reduce the computational complexity of video quality assessment, a two-domain no-reference video quality assessment algorithm is proposed. In this algorithm, first, encoding informa- tion is extracted from the bitstream and video similarity is calculated according to the complexity of video contents in the compressed domain. Then, by taking into consideration the characteristics of human visual system, the video distortion is calculated by measuring the influence of blockiness and the blur artifacts in the pixel domain. Thus, the video quality is assessed according to the video similarity and the video distortion. The proposed algorithm is fi- nally tested on the LIVE Video Quality Database. The results show that the proposed algorithm, which possess a prediction accuracy and a monotonicity respectively up to 0.8013 and 0. 7861, is better than the existing ten video quality assessment techniques, and that it meets the requirements of real-time application because it is of low com- putational complexity.
关 键 词:视频质量 无参考评价算法 视频相似度 视频失真度 人类视觉系统
分 类 号:TN919.8[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.147.211