轴承钢摩擦副全流量在线磨粒静电监测方法  被引量:8

Method for oil-line debris electrostatic monitoring of bearing steel sliding friction pairs

在线阅读下载全文

作  者:陈志雄[1,2] 左洪福[1] 詹志娟[1] 张营[1] 孙见忠[1] 蔡景[1] 

机构地区:[1]南京航空航天大学民航学院,南京210016 [2]南昌航空大学航空制造工程学院,南昌330063

出  处:《航空动力学报》2012年第5期1096-1104,共9页Journal of Aerospace Power

基  金:国家自然科学基金与中国民航联合基金重点项目(60939003);南京航空航天大学基本科研业务费专项科研项目(NS2010171);国家自然科学基金(61079013)

摘  要:为满足滑油系统零部件衰退早期症兆监测要求,采用自制的全流量在线磨粒静电传感器对润滑条件下轴承钢滑动摩擦副开展实时在线磨损状态监测研究.研究了润滑条件下金属磨粒荷电机理和设计了静电监测系统,开展了不同载荷和滑动速度时的磨损实验,对摩擦系数、静电感应信号、静电信号均方根值(RMS)进行相关性分析.研究结果显示:①全流量在线磨粒静电监测方法与摩擦系数均能监测到粘着的发生,具有一致性;②静电监测方法在粘着发生前监测到异常;③在稳定磨损阶段,摩擦系数随载荷的增大而减小,随滑动速度的升高而降低;④在剧烈磨损阶段,静电信号中脉冲尖峰的RMS值随载荷增加时先增加后减小,随滑动速度的升高而减小.In order to meet the requirements of condition monitoring of oil system component deterioration at an early stage,an oil-line debris electrostatic sensor has been used to investigate real time and in-line wear monitoring in oil lubricated sliding contacts of bearing steel.The charging mechanism of oil lubricated metallic debris was researched and electrostatic monitoring system was designed.The wear experiments were divided into different loads and speeds,and then the friction coefficient,oil-line debris electrostatic signal,and electrostatic signal root mean square(RMS) were obtained and correlatively analyzed.The results show:(1) the oil-line debris electrostatic method and friction coefficient can consistently detect adhesive wear;(2) the electrostatic monitoring method can detect the abnormal signal before adhesion;(3) in the normal wear stage,the friction coefficient increases with the load reduction,and reduces with the speed increase;(4) in the severe wear stage,the RMS of electrostatic signal pulse peak first increase,and then reduces with the load increase,and reduces with the speed increase.

关 键 词:发动机状态监测 GCR15轴承钢 全流量 荷电磨粒 静电 磨损 

分 类 号:V233.4[航空宇航科学与技术—航空宇航推进理论与工程] V216.8

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象