Wellposedness for anisotropic rotating fluid equations  

Wellposedness for anisotropic rotating fluid equations

在线阅读下载全文

作  者:FANG Dao-yuan WANG Su-mei ZHANG Ting 

机构地区:[1]Department of Mathematics,Zhejiang University,Hangzhou 310027,China

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2012年第1期9-33,共25页高校应用数学学报(英文版)(B辑)

基  金:Supported by NSFC(10871175,10931007,10901137);Zhejiang Provincial Natural Science Foundation of China(Z6100217);Program for New Century Excellent Talents in University

摘  要:The weUposedness problem for an anisotropic incompressible viscous fluid in R3, ro- tating around a vector B(t, x) := (b1 (t, x), b2 (t, x), b3 (t, x)), is studied. The global wellposedness in the homogeneous case (B = e3) with sufficiently fast rotation in the space B0,1/2 is proved. In the inhomogeneous case (B = B(t, xh)), the global existence and uniqueness of the solution in B0,1/2 are obtained, provided that the initial data are sufficient small compared to the horizontal viscosity. Furthermore, we obtain uniform local existence and uniqueness of the solution in the x same function space. We also obtain propagation of the regularity in B2,11/2 under the additional assumption that B depends only on one horizontal space variable.The weUposedness problem for an anisotropic incompressible viscous fluid in R3, ro- tating around a vector B(t, x) := (b1 (t, x), b2 (t, x), b3 (t, x)), is studied. The global wellposedness in the homogeneous case (B = e3) with sufficiently fast rotation in the space B0,1/2 is proved. In the inhomogeneous case (B = B(t, xh)), the global existence and uniqueness of the solution in B0,1/2 are obtained, provided that the initial data are sufficient small compared to the horizontal viscosity. Furthermore, we obtain uniform local existence and uniqueness of the solution in the x same function space. We also obtain propagation of the regularity in B2,11/2 under the additional assumption that B depends only on one horizontal space variable.

关 键 词:the anisotropic Navier-Stokes-Coriolis equation WELLPOSEDNESS anisotropic. 

分 类 号:O343.8[理学—固体力学] O175.29[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象