检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京科技大学经济管理学院,北京100083 [2]清华大学自动化系,北京100084
出 处:《计算机工程与应用》2012年第17期148-153,160,共7页Computer Engineering and Applications
基 金:国家自然科学基金(No.70872010;No.60805010;No.71101010;No.71172169;No.61175002);中央高校基本科研业务费专项基金资助(No.FRF-BR-11-019A)
摘 要:基于本体的概念语义相似度近年来在信息科学的多个领域获得了广泛的应用,其计算方法也为诸多学者所关注。分析现有基于本体的概念语义相似度计算方法的工作原理和优缺点,提出一种对概念共享路径的重合度和概念最低共同祖先节点的深度进行综合加权的概念语义相似度算法。该算法灵活简便、可扩展性强,能够应用于不同类型的本体。使用基因本体和植物本体的部分数据进行了实验并与两种现有算法进行了比较,实验结果证明了提出的计算方法的正确性和有效性。Over the past few years, ontology-based semantic similarity has been widely used in many fields of infor- mation science. As such, methods for the calculation of semantic similarities from ontology have been receiving more and more attention. This paper analyzes principles, advantages, and disadvantages of existing methods for cal- culating semantic similarities, and it proposes a new method that assesses semantic similarity based on two proper- ties of the Directed Acyclic Graph(DAG) structure of an ontology: the degree of overlap in paths from the root to the nodes corresponding to the given concepts and the depth of the Lowest Common Ancestor (LCA) node of these nodes. The proposed method is flexible and can be applied to ontologies of a wide variety of domains. It applies the proposed method to Gene Ontology (GO) and Plant Ontology (PO), and it compares the results with those of two leading methods. Results show the correctness and effectiveness of the proposed method.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117