检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:栾某德[1] 刘涤尘[1] 廖清芬[1] 董超[1] 欧阳利平[1]
机构地区:[1]武汉大学电气工程学院,湖北省武汉市430072
出 处:《电网技术》2012年第6期141-147,共7页Power System Technology
基 金:国家自然科学基金项目(51077103)~~
摘 要:提出了一种基于连续小波变换(continuous walelet transform,CWT)和奇异值分解(singular value decomposition,SVD)相结合的提升小波系数SVD辨识信号振荡频率和模式信息提取及信号去噪的新方法。克服了噪声较大或者密集模态时,小波脊线不清晰甚至会出现混叠和交叉难以提取频率的情况,根据提升的小波系数奇异值分解频率向量识别各阶振荡模式的频率。同时选用小波能量系数来识别主导振荡模式,用小波软阈值去噪和SVD分解后矩阵重构来进行信号去噪。CWT可以处理含时变振荡模式的低频振荡信号,且对模式参数具有较高的辨识精度。仿真算例验证了算法的有效性和适用性。Based on the combination of continuous wavelet transform (CWT) with singular value decomposition (SVD), a new algorithm to identify oscillation frequency of signal, extract mode information and denoise signal by raising SVD of wavelet coefficient is proposed. The condition that under high noise level or closely spaced mode of noise, the wavelet ridges are unsharp and even the frequency is hard to extract due to the aliasing and intersection of wavelet ridges can be overcome by the proposed method, and the frequencies of oscillation modes in different orders can be identified according to frequency vectors of the raised SVD of wavelet coefficients. Meanwhile the wavelet energy coefficient is chosen to identify the dominant oscillation mode, and signal denoising is performed by use of wavelet soft-thresholding denoising and restructured matrix after the SVD of wavelet coefficient. CWT can be used to deal with time-varying low-frequency oscillation signals containing time-varying oscillation mode, and the identification accuracy of mode parameters is high. Both effectiveness and applicability of the proposed algorithm are verified by simulation results.
关 键 词:连续小波变换(CWT) 奇异值分解(SVD) 时变振荡 小波能量系数 主导模式 小波软阈值去噪
分 类 号:TM71[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31