跳分形过程下延展期权定价(英文)  被引量:3

Pricing extendible option under jump-fraction process

在线阅读下载全文

作  者:彭斌[1] 彭菲[2] 

机构地区:[1]中国人民大学商学院,北京100872 [2]大不列颠哥伦比亚大学电子计算机学院

出  处:《华东师范大学学报(自然科学版)》2012年第3期30-40,共11页Journal of East China Normal University(Natural Science)

基  金:国家自然科学基金(71002098)

摘  要:当标的资产遵循跳分形过程时,构建了延展期权的评估框架.首先,在风险中性环境里,对标的资产发生跳跃次数的收益求条件期望现值,导出了延展一期的看涨期权解析定价公式,并探讨了公式的一些特殊情形.然后,将定价公式延展到M期,该延展期权价值在M趋于无穷极限状态时,将收敛于永久延展期权.提出了一种简单有效的两点外推法求极限.最后,提供数值结果,阐述了定价表达式的简单实用.A valuation framework for extendible options is constructed when the underlying asset obeys a fractional process with jump. Under the risk neutral environment, an analytic formula for the call option with one extendible maturity is derived by solving the expected present value of cashfiow and conditioning jumps for the underlying asset. Moreover, some special cases of the formula are discussed. These results are generalized to the option withMextendible maturity. Its value will converge in the limit to the value of perpetual extendible option as the number of extendible maturity increases to infinite. Extrapolated technique with two points is presented to yield a simple and efficient computation procedure to calculate the limit. Numerical results are provided to illustrate provided that our pricing expressions are easy to implement.

关 键 词:跳分形过程 延展期权 两点外推技术 

分 类 号:O211.9[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象