基于LC-MS分析的中药体内成分辨识技术  被引量:11

Identification technique for in vivo ingredients of traditional Chinese medicines based on LC-MS analysis

在线阅读下载全文

作  者:闫广利[1] 韩莹[1] 王喜军[1] 

机构地区:[1]黑龙江中医药大学,黑龙江哈尔滨150040

出  处:《中国中药杂志》2012年第12期1765-1770,共6页China Journal of Chinese Materia Medica

基  金:国家自然科学基金项目(81173500);国家"重大新药创制"科技重大专项(2009ZX09502-005)

摘  要:中药血清药物化学是阐明中药药效物质基础直接而有效的方法,然而中药化学成分的复杂性和体内过程中成分间的相互作用决定了中药体内成分分析的艰巨性。液相色谱-质谱联用技术为中药体内成分的全息表征提供了有效的分析手段,然而由于生物样品中内源性物质的严重干扰难以在采集的色谱图中直观地辨识出中药体内成分,迫切需要引入专属的成分辨识技术,以避免对中药体内成分的人为漏检。该文结合黄连在大鼠血中的移行成分分析,介绍用于质谱数据处理的质量短缺过滤技术、Metabolynx软件以及主成分分析、偏最小二乘判别分析、正交偏最小二乘判别分析等模式识别方法在中药体内成分辨识中的应用。Serum pharmacochemistry of traditional Chinese medicine (TCM) is a direct and effective method for determining efficacious substance foundation of TCM. However, the complexity of chemical constituents of TCM and the interaction among ingredi- ents in the in v^tro process make the analysis on in vitro ingredients of TCM arduous. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has become the cornerstone in detection and characterization of in vivo ingredients of TCM because of its sensitivity and ability to analyze complex mixtures. However, due to significant interference from endogenous species, detection and identification of the constituents of TCM in the biological matrices are often difficult. There is a crying need for introducing specialized ingredient identification techniques to avoid artificial omission of in vivo ingredients of TCM. On the basis of the analysis on transitional ingredients in rat blood, this essay introduces the application of such pattern recognition methods as mass defect filter, Metabolynx soft- ware and principal component analysis, partial least squared discriminant analysis and orthogonal partial least squared discriminant analysis in identifying in vivo ingredients of TCM.

关 键 词:中药血清药物化学 体内成分分析 质量短缺过滤 Metabolynx 模式识别 

分 类 号:R284[医药卫生—中药学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象