检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学与贝尔实验室通信和网络联合实验室 [2]上海交通大学电子工程系,上海200030
出 处:《上海交通大学学报》2000年第2期185-188,共4页Journal of Shanghai Jiaotong University
基 金:贝尔实验室(中国)上海分部资助
摘 要:传统的语音端点检测方法以信号的短时能量、过零率等简单特征作为判决特征参数.这些方法在实际应用中,尤其当信号信噪比比较低时,无法满足系统的需要.文中利用语音信号的倒谱特征作为判决抽样信号帧是否为语音信号的依据,并提出了倒谱距离测量法和循环神经网络法.通过对宽带噪声-白噪声干扰情况和一种特殊噪声——汽车噪声情况的实验,发现倒谱特征参数的语音信号端点检测方法在噪声环境下具有传统的能量方法无法比拟的优越性。Most practical automatic speech recognition(ASR) systems must work with a small signal noise ratio(SNR), and the conventional speech detection methods based on some simple features such as energy cannot work well in the noisy environments. In this paper, cepstrum was used as the feature to detect the voice activity. Two algorithms for endpoint detection of noisy speech signal were proposed. The first one takes the cepstral distances as the decision thresholds instead of short time energy. The second approach takes advantages of recurrent neural networks. The experiments show that the high accurate rates can be obtained in the noisy cases.
分 类 号:TN912.34[电子电信—通信与信息系统] TN911.23[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200