检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京信息工程大学江苏省网络监控中心,江苏南京210044 [2]南京信息工程大学计算机与软件学院,江苏南京210044
出 处:《计算机与现代化》2012年第6期191-194,199,共5页Computer and Modernization
基 金:江苏省博士后基金资助项目(1001030B)
摘 要:随着企业信息化在生产实时监测、海量存储和科学分析决策等方面的需求不断提升,运维监控系统已逐渐成为主要的管理手段。采用最新的云计算技术,设计及搭建一个数据规模易扩展、处理速度快、安全性高、成本低的云运维监控系统;针对运维控制系统中海量监控历史数据实时提取响应速度慢的缺点,设计并实现一种基于Hadoop的分布式海量数据处理模型。仿真实验证明,Hadoop在对云监控系统中的海量数据提取效率优于传统方法,随着数据量的快速增长,优势越明显。With the rising of enterprise informatization demands in the production of real-time monitoring, massive storage and scientific analysis and decision, the operation and maintenance monitoring systems have gradually become the main management tools. By using the latest cloud computing technology, this paper designs and builds a cloud operation and maintenance monito- ring system, which is easy to expand for data scale, quick for processing speed, high for security, and low for cost. And in the light of the shortcomings of slow response to the real-time extraction of massive and historical monitoring data in operation and ma- intenance control system, the paper designs and implements a distributed massive data processing model based on Hadoop. Simu- lation experiments show that the massive data extraction efficiency of the cloud monitoring system based on Hadoop is superior to traditional methods, and the advantage is more obvious with the rapid growth of the amount of data.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28