检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄莉[1] 任小平[1] 张晓杰[1] 陈玉宁[1] 姜慧芳[1]
机构地区:[1]中国农业科学院油料作物研究所/农业部油料作物生物学与遗传育种重点实验室,湖北武汉430062
出 处:《作物学报》2012年第6期935-946,共12页Acta Agronomica Sinica
基 金:国家重点基础研究发展计划(973计划)项目(2011CB109300);农作物种质资源保护项目(NB2010-2130135-28B);国家现代农业产业技术体系建设项目(CARS-14-种质资源评价)资助
摘 要:以国际半干旱热带地区作物研究所(ICRISAT)花生微核心种质146份资源为材料,鉴定农艺性状和黄曲霉抗性,用26对SSR引物检测多态性位点,在分析连锁不平衡、群体结构和Kinship的基础上进行关联分析。连锁不平衡的分布显示R2平均值为0.185,表明26对SSR引物扩增的120个位点之间具有较低的连锁不平衡程度。群体结构分析结果将146份花生品种分为2个亚群,分别对应疏枝亚种和密枝亚种,与植物学分类和遗传分化分析的结果基本一致。关联分析表明,共有39个位点与10个农艺性状(株高、总分枝数、第一分枝数、小叶宽、结果分枝数、百果重、出仁率、单株生产力、种子长、种子宽)相关联,表型变异解释率为1.50%~20.34%,16个SSR位点与黄曲霉侵染病情指数、黄曲霉产毒量相关联,表型变异解释率为5.23%~17.19%,与农艺性状、黄曲霉抗性同时相关联的SSR位点有13个。关联位点的等位变异效应分析表明,10个农艺性状和2个黄曲霉抗性性状共有63个增效等位变异和47个减效等位变异,并发掘了ICG6022等携有优良等位变异的载体品种。Yield is an important trait in peanut breeding, which is strongly influenced by environments and complex genetic fac- tors. Association mapping, based on natural population and linkage disequilibrium (LD), has been successfully used for exploring the genetic basis of complex traits in crops. In this study, we introduced a set of peanut mini-core collection of 146 varieties from International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), which were phenotyped for agronomic traits and resistance to Aspergillus flavus and genotyped by using 26 SSR primers containing 120 loci in the population. Based on the analyses of linkage disequilibrium, population structure and kinship, we performed the genome-wide association mapping. Dis- tribution of LD suggested that the average of the total R2 was 0.185, indicating a relative low level of LD between the SSR loci. One hundred sixty-four varieties were grouped into two subgroups by population structure analysis corresponding to Arachis hy- pogaea ssp. fastigiata and Arachis hypogaea spp. hypogaea, respectively, which was consistent with botanical classification and results of analysis of genetic differentiation. A total of 39 loci were identified to be associated with ten agronomic traits, with 1.50-20.34% of phenotypic variation explained. A total of 16 loci were associated with Aspergillus flavus infection index and aflatoxin amount, with 5.23-17.19% of explained phenotypic variation. Of which, 13 common loci were associated with both agronomic traits and resistance to Aspergillus flavus. Furthermore, 63 alleles with increasing effect, 47 alleles with decreasing effect and the varieties carrying them were identified for ten agronomic and two resistance-related traits. This study demonstrates that association mapping is effective to explore genetic basis of important traits in peanut and assist to peanut breeding.
分 类 号:S435.652[农业科学—农业昆虫与害虫防治]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147