检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]军械工程学院电气工程系,河北石家庄050003
出 处:《红外技术》2012年第6期346-350,共5页Infrared Technology
摘 要:在脉冲涡流热成像检测中,有效抑制红外热图的噪声是最终提取特征量识别缺陷的关键环节之一。将提升小波阈值去噪的思想运用到二维经验模态分解(BEMD)中,提出了一种基于BEMD的提升小波阈值去噪方法。针对传统软、硬阈值法的局限性,引入包括带有可变因子的隶属函数的模糊阈值处理方法。将该方法运用于脉冲涡流热成像信号的实际消噪处理,实验结果表明,该方法与小波阈值去噪相比,去噪效果更明显,图像的细节特征更清晰。Effectively suppressing the noise in infrared images is the key to extract features to identify the defects in Pulse Eddy Current(PEC) thermography detection. A new lifting wavelet threshold de-noising method is presented based on Bidimensional Empirical Mode Decomposition(BEMD). The fuzzy thresholding method which including a membership function with a variable factor was introduced to deal with the limitations of traditional soft and hard threshold method. The new de-noising method is applied to de-noise the pulse eddy current thermography signals. Compared to conventional wavelet threshold de-noising method, experimental results show that the de-noising performance of this method is better and the details of image feature are clearer.
关 键 词:二维经验模态分解 提升小波 脉冲涡流热成像检测 模糊阈值函数 去噪
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117